您现在所在位置: 主页 > 新闻中心 > 公司资讯

公司资讯

Company information

行业动态

Industry dynamics

常见问题

Common Problem

半导体(一种可导电材料)BBIN BBIN宝盈集团

发布日期:2022-10-15 21:35 浏览次数:

  半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。[1]

  中文名:半导体 外文名: 所属学科: 英文名:semiconductor 应用:收音机、电视机以及测温 物质形式:固体、气体、等离子体等 释义:常温下导电性能介于导体与绝缘体之间的材料

  半导体,是指电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10-5~107欧·米之间,温度升高时电阻率指数则减小。如硅、锗、硒等,半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显着。

  1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

  不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

  发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

  在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

  很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

  1.在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—这是半导体最显着、最突出的特性。例如,晶体管就是利用这种特性制成的。

  2.当环境温度升高一些时,半导体的导电能力就显着地增加;当环境温度下降一些时,半导体的导电能力就显着地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。

  3.当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。

  半导体是指导电性能介于导体和绝缘体之间的材料。我们知道,电路之所以具有某种功能,主要是因为其内部有电流的各种变化,而之所以形成电流,主要是因为有电子在金属线路和电子元件之间流动(运动/迁移)。所以,电子在材料中运动的难易程度,决定了其导电性能。

  常见的金属材料在常温下电子就很容易获得能量发生运动,因此其导电性能好;绝缘体由于其材料本身特性,电子很难获得导电所需能量,其内部很少电子可以迁移,因此几乎不导电。而半导体材料的导电特性则介于这两者之间,并且可以通过掺入杂质来改变其导电性能,人为控制它导电或者不导电以及导电的容易程度。这一点称之为半导体的可掺杂特性。

  前面说过,集成电路的基础是晶体管,发明了晶体管才有可能创造出集成电路,而晶体管的基础则是半导体,因此半导体也是集成电路的基础。半导体之于集成电路,如同土地之于城市。很明显,山地、丘陵多者不适合建造城市,沙化土壤、石灰岩多的地方也不适合建造城市。“建造”城市需要选一块好地,“集成”电路也需要一块合适的基础材料——就是半导体。常见的半导体材料有硅、锗、砷化镓(化合物),其中应用最广的、商用化最成功的当推“硅”。

  那么半导体,特别是硅,为什么适合制造集成电路呢?有多方面的原因。硅是地壳中最丰富的元素,仅次于氧。自然界中的岩石、砂砾等存在大量硅酸盐或二氧化硅,这是原料成本方面的原因。硅的可掺杂特性容易控制,容易制造出符合要求的晶体管,这是电路原理方面的原因。

  硅经过氧化所形成的二氧化硅性能稳定,能够作为半导体器件中所需的优良的绝缘膜使用,这是器件结构方面的原因。最关键的一点还是在于集成电路的平面工艺,硅更容易实施氧化、光刻、扩散等工艺,更方便集成,其性能更容易得到控制。因此后续主要介绍的也是基于硅的集成电路知识,对硅晶体管和集成电路工艺有了解后,会更容易理解这个问题。

  除了可掺杂性之外,半导体还具有热敏性、光敏性、负电阻率温度、可整流等几个特性,因此半导体材料除了用于制造大规模集成电路之外,还可以用于功率器件、光电器件、压力传感器、热电制冷等用途;利用微电子的超微细加工技术,还可以制成MEMS(微机械电子系统),应用在电子、医疗领域。

  2000年以来,全球Fabless公司吸引的风险以平均每年16%的速度减少,新成立的设计公司越来越少,领先的公司通过积累与并购不断扩大规模,全球前50位的设计公司占据该领域超过90%的市场份额。

  从半导体设备供应商的角度来看,全球整合带来的的挑战更多更大。在商业上,由于半导体制造产能越来越集中于全球前几名的半导体制造商,半导体设备供应商所面对的客户也趋于集中,如2010年时全球前5位的半导体厂商资本支出总和占全球的49%,而在2012年这个数字会上升到63%。

  设备商在面对占据其市场巨大份额的大客户时,所面临到的议价压力和对于服务的高要求自然不言而喻。其实,支出集中也来自于整合,要保持拥有最先进的制造工厂,半导体制造商需要扩大其规模以保证达到一定量的销售额(RevenueThresh-old)来维持先进产能的持续。

  另一方面,整个全球半导体设备市场规模并没有随半导体市场同步成长,半导体制造商投入在半导体设备上的支出相对在减少。如图2所示,在1991年到2000年的10年间,全球半导体设备支出与半导体市场之比平均值为17.2%,在2001年到2010年比值的平均值为14.3%,而近两年这个比值降到了12%~13%。

  但是在技术层面上,半导体制造商对于半导体设备商提出了更多需求。为了实现更多的芯片功能,以“MorethanMoore”的方式为产品添加更多附加值,半导体制造商对设备提出了更加多样化的要求,如MEMS、TSV、Ⅲ-Ⅴ族元素等应用都需要设备制造商分别进行研发来改造现有设备机型以符合客户要求。另一方面,沿着摩尔定律微缩的道路也正在进行着,设备制造商需要投入大量精力与资金以支持最前沿的研究。

  设备供应商在面对全球市场环境和技术压力下,应对的方式之一也是整合。为了提高生产效率和研发效率,未来在每一步半导体生产技术中经过整合留存下来的设备供应商可能只有2~3家。

  这两三家厂商之间,和其他生产环节的设备供应商之间,和半导体制造商之间,和材料供应商之间,和设备子系统厂商(如光学系统、真空泵、电源系统等)都需要密切的合作才有可能共同研发出改变世界的“破坏性”的技术。全球整合不可避免,不过在任何市场状况下都寻求创新是半导体产业生生不息的原动力。

  最早的实用“半导体”是「电晶体(Transistor)/二极体(Diode)」。

  一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

  二、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

  三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线℃,是性价比极高的一种测温元件。

  四、半导体致冷器的发展,它也叫热电致冷器或温差致冷器,它采用了帕尔贴效应。

  以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

  今年是摩尔法则(Moore’slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。

  这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,因特网将全世界联系起来,多媒体视听设备丰富着每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。

  这一切背后的动力都是半导体芯片。如果按照旧有方式将晶体管、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对芯片技术的法则;不久的将来,它有可能扩展到无线技术、光学技术、传感器技术等领域,成为人们在未知领域探索和创新的指导思想。

  毫无疑问,摩尔法则对整个世界意义深远。不过,随着晶体管电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。

  中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,“在10年左右的时间内,我们将看到摩尔法则崩溃。”前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。

020-88888888